AI_LOGBOOK://til/llm-inference-optimization

Home / TIL / llm-inference-optimization

LLM Inference Optimization Techniques

Jan 16, 2026
~5 min read
AI/ML #llm #inference #optimization #gpu #vllm

LLM Inference Optimization Techniques

Running LLMs in production is expensive. Here’s how to cut costs by 70%.

1. Quantization

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",
    load_in_4bit=True,
    device_map="auto"
)
PrecisionMemorySpeedQuality
FP1614GB1x100%
INT87GB1.2x99.5%
INT44GB1.5x98%

2. vLLM for Serving

from vllm import LLM, SamplingParams

llm = LLM(model="meta-llama/Llama-2-7b-hf")
params = SamplingParams(temperature=0.7, max_tokens=512)

outputs = llm.generate(prompts, params)

vLLM uses PagedAttention for 24x higher throughput.

3. Batching Strategies

async def batch_inference(requests, max_wait=50):
    batch = []
    deadline = time.time() + max_wait/1000
    
    while time.time() < deadline and len(batch) < 32:
        if requests:
            batch.append(requests.pop())
    
    return model.generate(batch)

4. KV Cache Optimization

llm = LLM(
    model="llama-7b",
    enable_prefix_caching=True
)

Results

OptimizationLatencyCost
Baseline500ms$1.00
+ Quantization350ms$0.50
+ vLLM150ms$0.30
+ Batching80ms$0.15